
Midterm	Review

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.8

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.



Introduction

• This	lesson	is	a	review	of	the	main	points	of	
the	first	part	of	this	course.

• These	are	mostly	slides	you	should	remember,	
or	remixes	of	some	of	those	slides.

2



The	Point
1.	It’s	not	calculus. Getting	the	right	answer	is	not 
enough.
2.	The	goal is	to	write	beautiful programs.
3. A	beautiful	program	is	one	that	is	readable,	
understandable,	and	modifiable	by	people.

3

Remember	the	
Point!



Principles	for	writing	beautiful	programs
1.	Always remember:	Programming	is	a	People	
Discipline
2.	Represent	Information	as	Data;	Interpret	Data	
as	Information
3. Programs	should	consist	of	functions	and	
methods	that	consume	and	produce	values
4.	Design	Functions Systematically
5.	Design	Systems	Iteratively
6.	Pass	values	when	you	can,	share	state	only	
when	you	must.

4

We	haven’t	gotten	to	this	one	yet



How	to	Design	Functions	
Systematically
The	Design	Recipe

1.	Information	Analysis	and	Data	Design
2.	Contract	and	Purpose	Statement
3. Examples
4.	Design	Strategy
5.	Function Definition
6.	Tests

5

Everything	starts	from	the	Design	
Recipe



Design	functions	systematically

• Follow	the	recipe!
• The	structure	of	the	data	tells	you	the	
structure	of	the	program.
– Or	at	least	gives	you	good	hints!
– Data	Definition	à Template	à Code
– The	data	definitions	structure	your	wishlist,	too.

• Examples	make	you	clarify	your	thinking
– Be	sure	to	cover	corner	cases

6



The	Structure	of	the	Program	Follows	
the	Structure	of	the	Data

7

World

Rectangle Throbber

x-pos y-pos

x-vel y-vel

world-after-tick

rect-after-tick throbber-after-tick

unselected-rect-after-tick selected-rect-after-tick

rect-x-pos-after-tick

rect-y-pos-after-tick

rect-x-vel-after-tick

rect-y-vel-after-tickA	Portion	of	the	Data	Tree
A	Portion	of	the	Program	Tree

(your	wishtree)

or

Maybe	this	won’t	work	out	in	every	
detail,	but	it	gives	you	a	plan!



The	Recursion	Recipe

Recursion and	Self-Reference
Represent	arbitrary-sized	information	using	a	
self-referential (or	recursive)	data	definition.
Self-reference	in	the	data	definition	leads	to	self-
reference	in	the	template
Self-reference	in	the	template	leads	to	self-
reference	in	the	code.

8



Typical	Program	Design	Strategies

Design	Strategies
1.	Combine simpler	functions
2. Use	template	for	<data	def>	on	<value>
3.	Divide	into	cases	on	<condition>
4.	Use	HOF	<mapfn>	on	<value>
5.	Call	a	more	general	function
6.	General	Recursion
7.	{Initialize|Update} state	of	<??>

9

If	you	were	tweeting	out	a	description	
of	how	your	function	 works,	what	

would	you	say?



Choosing	a	Design	Strategy
• If	there	are	independent/sequential	pieces,	then	
combine	the	simpler	functions.

• Is	your	problem	a	special	case	of	another	problem	that	
might	be	easier	to	solve?		If	so,	solve	the	more	general	
problem,	and	then	use	generalization.

• Otherwise,	find	one	or	more	simpler	instances	of	same	
problem:
– Is	the	input	a	list?		If	so,	consider	using	a	HOF.
– Is	the	simpler	instance	a	substructure	of	the	original?		If	so,	
use	the	template.

– Otherwise,	use	general	recursion.

10

You've	been	doing	this	all	
term,	so	you	probably	
know	this.		But	it's	worth	
writing	down	anyway.

e.g.	number-list	=>	number-list-from,	 mark-depth	
=>	mark-depth-from,	 8-queens	=>	n-queens



Using	a	higher-order	function

• one	of	the	inputs	is	a	list	of	values
• you	need	to	treat	all	the	values	in	the	list	the	
same	way	and	combine	them	the	same	way.

• if	your	function	doesn’t	look	at	all	the	
elements	of	the	list,	then	probably	an	HOF	is	
not	suitable.

• look	at	the	types	to	help	choose	the	right	HOF.
• you	can	write	special-purpose	HOFs	for	other	
kinds	of	tree-structured	data

11



Using	a	template
• inputs	are	always	structured	(enumeration,	compound	
or	mixed)	data;	

• the	function's	organization	is	based	on	the	data	
definition for	one	(or	more)	of	the	function's	
parameters	

• one	function	per	interconnected	data	definition
• recursions	in	the	functions	follow	recursions	in	the	data	
definitions.

• are	some	of	the	decisions	or	transformations	
complicated?		Then	introduce	helper	functions
– There's	a	reason	for	that	ugly	little	thing– document	it	and	
test	it.

12



General	Recursion

• Inputs	encode	problems	from	a	class	of	problems
• Recursion	solves	a	related	problem	from	the	
same	class	(“subgoal”	or	“subproblem”)
– requires	ad	hoc	insight	to	find	a	useful	subproblem.	

• Termination	argument	is	required:	
– how	are	each	of	the	subproblems easier	than	the					
original	problem?

– formulate	this	as	a	halting	measure.	

13



General	Recursion	vs.	Structural	
Decomposition

• Structural	decomposition	is	a	special	case	of	general	
recursion:		it's	a	standard	recipe	for	finding	
subproblems that	are	guaranteed	to	be	easier,	because	
a	field	is	always	smaller	than	the	structure	it’s	
contained	in.

• How	to	tell	the	difference	between	structural	and	
general	recursion:
– In	the	definition	of	function	f :

(... (f (rest lst))) is	structural	decomposition
– we’re	calling	f on	a	substructure	of	lst

(... (f (... (rest lst))) is	general	recursion
– we’re	calling	f	on	something	that	depends	on	(rest	lst),	but	it’s	not	(rest	

lst)	itself.

14



Invariants	(1)

• Your	function	may	need	to	rely	on	information	
that	is	not	under	its	control
– eg:	an	inventory	has	at	most	one	entry	for	any	
ISBN

– eg:	the	rectangle	is	unselected
– eg:	k	=	(length	lst)
– eg:	u	=	(z+1)^2

• Record	this	assumption	as	an	invariant	
(WHERE	clause).

15



Invariants	(2)

• If	your	contract	is	f:	Something	->	??,	then	your	
function	has	to	give	the	right	answer	for	every	
possible	Something.	

• An	invariant	(WHERE clause)	limits	the	function’s	
responsibility.

• If	you	have	a	WHERE clause,	the	function	is	only	
responsible	for	giving	the	right	answer	for	inputs	
that	satisfy	the	invariant.

• f’s	caller	is	responsible	for	making	sure	that	the	
invariant	is	satisfied.

16



Summary

• We've	reviewed	the	big	take-away	points	from	
the	first	half	of	the	course.

• Next:	we	will	move	on	to	classes	and	objects.

17



Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	8.

18


